
 

 You can’t fix what you don’t see – Exostiv Labs – October 2024 1 

You can’t fix what you don’t see 

 

 

Whether you’re designing a single IP, an FPGA-based product, a CPU coprocessor, an ASIC, or a System on Chip (SoC), 

your product must work as intended—ideally flawlessly, though “good enough” often applies. 

The process starts with a spec, which is usually incomplete or unclear. Then comes design, where you implement the 

spec, followed by verification to ensure the design aligns with it. Software development runs in parallel, interacting with 

the hardware. Next is validation, testing the system under near-real-world conditions. 

Problems can arise at every stage: 

• Specs may be inaccurate or incomplete. 

• Designs can have errors or misunderstand the spec. 

• Hardware and software may not meet performance expectations. 

• The final product might not fit the intended application. 

Throughout this process, various techniques come into play. During design and verification, simulation is used 

extensively, often alongside code coverage and methodologies like UVM, or even formal techniques to ensure the 

implementation fully reflects the spec. Emulation speeds up this process, serving as a faster alternative to simulation. 

Prototyping (and sometimes “fast emulation”, whatever that means) becomes crucial when software is added since 

simulation and emulation alone are too slow for practical software execution. Prototypes are also used in the validation 

stage when testing the system in a real-world environment. 

Anyone in digital system engineering will recognize this workflow. Of course, the specific techniques used depend on 

budget and complexity trade-offs. 

Interestingly, none of the techniques mentioned are explicitly designed for “debugging.”… And yet, they all end up being 

used for it. 

 



 

 You can’t fix what you don’t see – Exostiv Labs – October 2024 2 

See below, we have tried to represent the position of each technique on a chart. This chart shows the max accessible for 

each dimension – reaching a specific combination of reach / speed value depend on the case. 

 



 

 You can’t fix what you don’t see – Exostiv Labs – October 2024 3 

“Debugging?” 

Debugging isn’t a straightforward process because a “bug” can refer to many different issues. For example, if a 

specification doesn’t account for a particular real-world scenario, a verification engineer could verify that the design 

perfectly matches the spec, yet the spec and design would still need updating to fix the oversight. Similarly, a design 

might be structurally and behaviorally correct but fail to meet performance expectations in real-world conditions. Lastly, 

the system environment could be misunderstood or misrepresented, and unexpected combinations of events might 

cause a system crash, revealing a deeper issue. 

As you can see, bugs can occur at different levels, have varying effects, and may require different methods to identify 

and fully understand them. 

However, the one thing all bugs have in common is that they cannot be fixed if they aren’t observed in the first place. 

The role of FPGA 

FPGAs play a unique role in the design process because certain techniques require operating speeds in the MHz range 

to be effective. 

Let’s step back and leave emulation and commercial prototyping platforms out of the picture for a moment. These high-

end tools, often provided by large EDA vendors, are expensive and beyond the reach of many engineering teams using 

FPGAs. 



 

 You can’t fix what you don’t see – Exostiv Labs – October 2024 4 

Instead, the most commonly used tool is JTAG instrumentation. It’s popular because every FPGA chip has a JTAG port 

built in, and the necessary tools are already included in the FPGA vendor’s software suite. 

Along with simulation, JTAG instrumentation is often all that’s available to help visualize and debug issues. However, as 

shown below, this leaves a significant gap in the range of cases that can be explored. Many scenarios can’t be simulated 

because they would require months of runtime. Moving to an FPGA prototype can solve this by allowing enough cycles 

to be executed, but it usually comes at the cost of limited visibility into the system. As one of our clients put it, “It’s like 

looking at a complex system through a straw.” 

Placing Exostiv Labs products on the map 

Exostiv Labs products are able to reach the following max. specs, occupying a space that is shown on the updated chart 

below. 



 

 You can’t fix what you don’t see – Exostiv Labs – October 2024 5 

Once you have an FPGA board or prototype set up, adding Exostiv or Exostiv Blade to your existing toolkit opens up a 

whole new range of exploration possibilities.. That also the case, even if you have access to a more complete set of 

equipment – see below. 

Conclusion: plan your debug strategy – with the right tools. 

One common mistake today is planning for design and verification but not for debugging. The first priority should be 

giving yourself the tools to observe your system — after all, you can’t fix what you can’t see. Without expanding your ability 

to visualize what’s happening inside your system, productivity will suffer, and you’ll waste weeks chasing down elusive 

issues. Breakthroughs come from observing the system clearly. 

Another mistake is dismissing a technique just because it isn’t perfect. Even the most rigorous design methodology and 

ingenuity won’t prevent bugs. The key is to make the most of every phase of design and take a practical, pragmatic 

approach. 

It’s wrong to think that one technique will solve all problems, just as it’s wrong to avoid planning for debugging because 

bugs are unpredictable. Debugging should always be part of the plan, with a range of tools and methods that focus on 

giving you clear visibility into the system. 

Exostiv Labs is all about giving you clear visibility into your FPGA platform. 

 

www.exostivlabs.com 

http://www.exostivlabs.com/

