Visibility into the FPGA.

Posts Tagged SFP

Deep Trace & Bandwidth

Exostiv provides deep trace AND bandwidth for maximal FPGA visibility

Deep Trace & Bandwidth

Exostiv provides the following maximum capabilities for capturing data from inside FPGA running at speed:

Capabilities.

  • 50 Gigabit per second bandwidth for collecting FPGA traces.
  • 8 Gigabyte of memory for trace storage.
  • 32,768 nodes probing simultaneously.
  • 524,288 nodes reach.
Actually, we have built EXOSTIV to provide VISIBILITY to FPGA designers performing debugging with real hardware. If you do not know why it is important, watch the following 7 minutes video. It sketches out the fundamentals of EXOSTIV.

We built EXOSTIV to provide visibility to the FPGA designer.

 

 

Interrupted captures are very useful too !

I was recently demonstrating Exostiv at a customer’s site and I received the following comment:
“Even with 50 Gbps bandwidth, this tool is hardly usable because you won’t see many nodes at a usual FPGA internal sampling frequency…”
This person was implying that – for example – probing more than 250 FPGA nodes at 200 MHz already exceeds this total bandwidth. So, Exostiv cannot be used to its fullest, right?

Wrong.

This reasoning is right if you think that only continuous captures are valuable for getting insight from FPGA.
The following short video explains why it is important. It features a case where the capture – from start to end – spans over 11 seconds ! . Depending on the trigger and data qualification (or data filtering options) – and by using the full provided trace data buffer (8GB) such an approach can let you observe specific moments of the FPGA in operation over hours !.
 

 

With the proper capture settings, EXOSTIV lets you observe FPGA over hours.

So, the features listed below are equally important for an efficient capture work.

Features.

  • 16 capture units that can be enabled/disabled dynamically
  • 16 multiplexed data groups per capture unit
  • 8k samples local buffer in each capture unit.
  • 1 trigger unit per capture unit. Defines start of capture.
  • Bit or bus condition. =, /=, <, >, range, out of range conditions
  • Repeating/interrupted capture based on trigger condition
  • Data qualification condition on input data. Capture only when the condition is true.
  • Interactive trigger or data qualification definition: no recompile needed
  • Sequential / state machine trigger in 2017 roadmap.

As always, thank you for reading (and for watching)
– Frederic

Exostiv for Intel (Altera) FPGA – announcement

Exostiv for Intel FPGA

Announcing… EXOSTIV for Intel FPGA

Using Intel FPGA?

We have exciting news for you: EXOSTIV will soon support Intel FPGA!
Please check the pictures above and below – this is EXOSTIV working with the ‘Attila’ dev kit of our partner, Reflex-CES, equipped with one Arria 10 GX 10AX115N4F40I3SG device.

We are now able to use EXOSTIV Dashboard Analyzer connected to an IP loaded into the design through the board QSFP port (with a QSPF to 4xSFP cable with splitter).
The board FMC connector mounted with our FMC to HDMI adapter works as an access port too! (Click here to check about the connectivity options for EXOSTIV.)

This beta version was shown during the training we co-organized with Telexsus Ltd. in Maidenhead (UK) on October 13rd and at the Europe edition of the Intel SoC FPGA Developer’s Forum (ISDF) held in Frankfurt on October 19th, where Exostiv Labs participated as a Regional Sponsor.

ISDF
The Intel SoC FPGA Developer’s Forum was held in Frankfurt on Oct. 19th.

We are happy to announce the availability of EXOSTIV for Intel FPGA (formerly Altera) for the end of 2016. That’s an exciting new step for us and for EXOSTIV !

Exostiv at ISDF

We would like to thank all our customers using Intel FPGA for their patience. We’ll be in touch!
– Frederic

Debug with reduced footprint

Footprint

Debug with reduced footprint

Footprint, ‘real estate’, resources, … No matter the design complexity, allocating resources to debugging is something you’ll worry about.
If you are reading these lines, it is likely that you have some interest in running some of your system debugging from a real hardware (Check this post if you do not know why it is important).

EXOSTIV enables you to get extended visibility out of running FPGA.
It impacts the target system resources in 2 ways:
– it requires logic, routing & storage resources from inside the target FPGA to place an IP used to reach internal FPGA nodes.
I’ll cover this aspect in a future post.

– it requires a physical connector to access the FPGA.
(- And NO, JTAG is not good enough because it does not support sufficiently large bandwidth – even with compression).

Read on…

Choosing the right connector

All EXOSTIV Probes provide 2 connection options:
Option #1: uses a single HDMI connector type (! this is not a full HDMI connection !)
Option #2: uses up to 4 SFP/SFP+ connectors

From there, a wider range of options is within reach if you consider using additional cables and board adapters available from Exostiv Labs or from third-party suppliers.

Which option will work for you? Follow the guidelines below:

1. Is there an existing SFP/SFP+/QSFP/QSP+ directly connected to the FPGA transceivers?

  • Check if you can reserve this FPGA resource (and the board connector) for debug – at least temporarily. You’ll need 1 SFP/SFP+ connection per used gigabit transceiver
  • QSFP/QSFP+ connectors can be used with a 4xSFP to QSFP cable with splitter.

Note: most of the Dini Group’s boards feature SFP/SFP+, quad SFP/SFP+ or QSFP/QSFP+ connectors by default. And they are directly connected to FPGA transceivers.

2. Is there another type of connector directly connected to the FPGA transceivers?

Please contact us for details on our adapters, external references and custom adapters support.

3. For all other cases: you’ll need to modify your board and add a connector.

    • Is space on the board critical? Go for HDMI or even Micro-HDMI !

See picture below – this is an Artix-7 board equipped with a tiny micro-HDMI connector, providing up to 4 x 6.6 Gbps bandwidth for debugging FPGA.

  • You do not have space constraints (lucky you)? Pick the one you like: SFP/QSFP/HDMI/micro-HDMI/other (+ adapter).

*** Check our special 12 Gbps probe test report – Click here ! ***

EXOSTIV provides standard and custom connection options that enable fast deployment with standard FPGA development kits and/or limits the footprint requirements from the target FPGA board.

Thank you for reading.
– Frederic

STAY IN TOUCH

Sign in to our Newsletter